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Abstract—Automated program repair (APR) has extensively
been developed by leveraging search-based techniques, in which
fix ingredients are explored and identified in different granular-
ities from a specific search space. State-of-the approaches often
find fix ingredients by using mutation operators or leveraging
manually-crafted templates. We argue that the fix ingredients can
be searched in an online mode, leveraging code search techniques
to find potentially-fixed versions of buggy code fragments from
which repair actions can be extracted. In this study, we present an
APR tool, LSRepair, that automatically explores code repositories
to search for fix ingredients at the method-level granularity
with three strategies of similar code search. Our preliminary
evaluation shows that code search can drive a faster fix process
(some bugs are fixed in a few seconds). LSRepair helps repair 19
bugs from the Defects4J benchmark successfully. We expect our
approach to open new directions for fixing multiple-lines bugs.

Index Terms—Program repair, code search, fix ingredients.

I. INTRODUCTION

Automated program repair holds the promise of reducing

the manual debugging effort by automatically suggesting

patches for identified bugs. To date, most of the state-of-

the-art approaches implement a generate-and-validate process

where the fix is eventually selected or created after searching

among several possibilities (which form the search space) [1],

[2]. For example, GenProg [3] uses genetic programming to

apply a sequence of mutation operations on a buggy source

code until any generated patch passes the given tests. Since

then, several directions to APR have been explored [4]–[29].

Many of the proposed approaches [3]–[5], [7]–[13] generate

patch candidates by applying predefined mutations on the

suspicious locations detected by fault localization techniques

(e.g., Zoltar [30]). Experimental results have shown that such

search-based APR techniques can fix a wide range of bugs and

be scalable to large programs without extra specifications [31].

Unfortunately, although existing search-based APR tech-

niques have achieved promising results, there still exist two

important issues: (1) the correct patches are not always in the

search space defined by each APR approach, which makes

it impossible to fix the corresponding bugs successfully even

after exploring the whole space; (2) the search space can be

exploded. Widening the search space can indeed increase the

probability of including the correct patches, but it will reduce

the probability to find them earlier. A larger search space will

also increase the probability to generate plausible patches [32],

which increases probability of accidentally blocking the search

for correct patches [13], [23].

Reflecting on the aforementioned threats, recent state-of-

the-art APR approaches build on the assumption that the

adequate fix ingredients can be found in existing code bases

(e.g., open source repositories) [5], [7]–[10], [19], [33]. Nev-

ertheless, most approaches still rely on simple patterns (e.g.,

Modify If-statement expression in Nopol [28]) or on templates

(e.g., manually written as in PAR [7] or systematically learned

as in Prophet [12] and FixMiner [34]), instead of leveraging a

fix ingredients as it is. There is currently a research effort

on extracting fix ingredients by leveraging abstract syntax

tree differencing [35]–[37]. Unfortunately, AST diff patterns

offer fine-grained, high-level repair actions, which will rapidly

increase the search space and thus further aggravate the issue

of search space explosion [13].

We note that, in practice, many programs consist of de-

veloping routines, data structures, and designs that are also

implemented by other programs [16], [38], [39]. Developers

are indeed recurrently writing code to address similar tasks, or

cloning (e.g., via copy/paste) other code. Our intuition is that

while some code may be buggy, the similar code may have
been fixed. Recent APR approaches start with this intuition

as well: symbolic execution-based approaches [40] would use

reference implementations to drive the search for fixes; code-

search-based approaches such as SearchRepair [20] perform

by encoding a large database of human-written code fragments

as SMT constraints on input-output behavior.

In this paper, we investigate the potential of using code

search techniques on-the-fly to implement a APR tool, LSRe-
pair. This approach leverages a live search of fix ingredients

in real-world code bases to fix bugs automatically. Concretely,

we limit the threat to space explosion by focusing on fix

ingredients at the method-level instead of the statement-level,

which are often used by other APR tools. The fixing process,

however, may iterate over entities at the statement level.

The main contributions of this paper are as follows:

• We investigate the potential of code-to-code search tech-

niques, clone detection, and semantic code search tech-

niques, to rapidly produce relevant fix ingredients for APR.

• We particularly assess the proportion of bugs in the De-

fects4J benchmark that can be automatically fixed by a

simple APR prototype implementation based on live code

search. Concretely, we show how we managed to repair 19

bugs from the Defects4J bugs, including correctly fixing 10

bugs that no state-of-the-art tool was reported to have fixed.
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• We present a discussion on the research challenges to be

addressed towards building a scalable and effective APR

technique based on state-of-the-art code search tools.

II. BACKGROUND AND RELATED WORK

A. Code Clone & Code Search

The applications of state-of-the-art code clone tech-

niques [41]–[44] have shown that code clones are pervasive.

In addition, several other empirical studies have confirmed

that code changes are repeatedly performed in software code

bases [45]–[48]. Indeed, same changes are prevalent because

multiple occurrences of the same bug (e.g., due to copy/paste

clones) require the same change. Similarly, when an API

evolves, or when migrating to a new library/framework, all

client code fragments must be adapted by the same collat-

eral changes [49]. More recently Kim et al. have proposed

FaCoY [50], a code-to-code search engine for real-world

code fragments based on query alternation, and discussed the

possibility to find out similar patch code for the bugs in

Defects4J. Thus, we leverage FaCoY in one of our search

strategies to find fix ingredients for automated repair.

B. Software Transplantation and APR with Code Search

Our work is largely related to the field of software transplan-

tation that aims at transforming a functionality from a donor

program to a recipient program. Software transplantation is

often used in repair. For example, CodePhage [51] can fix

common program errors (e.g., out of bounds, divide by zero,

etc.), which involve missing checks, by finding donor code

with error checking and transplanting it to a recipient buggy

code. Trying to copy code is however challenging as data

structures and name space may significantly vary between

donor and recipient code, thus it may require an intermediate

code-independent representation.

To work around this issue, SearchRepair [20] proposes to

leverage semantic code search to guide repair. This technique

utilizes static analysis to build a searchable database of open-

source code fragments that describe behaviors as a set of SMT

constraints. The technique then leverages dynamic analysis to

identify candidate faulty regions in a program, and construct

input-output behavior profiles. We argue that such an approach

remains expensive and can only be exercised for small and

trivial code fragments. A fully static and live code search

approach, as we proposed in this work, may allow to address

more real-world bugs as the ones in Defects4J.

III. LIVE SEARCH OF FIX INGREDIENTS

Figure 1 shows the workflow of the proposed approach,

LSRepair. In our work, we use information of fault localiza-

tion at different levels. This section presents our methodology

of searching and leveraging fix ingredients to repair bugs.

Fault Localization to
identify faulty methods

Generate patches
By code transform

Validate and 
check correctness

Selection of code 
search strategyProgram

Fig. 1: Approach workflow.

A. Fault Localization
The first step of our approach is to identify suspicious code

locations that need to be repaired. The approach leverages

Zoltar [30], a spectrum-based fault localization toolset. This

tool produces a ranked list of code lines that are likely to be

a bug. In our approach, depending on the search strategy, we

may need to extract the encompassing statements whose code

blocks are located in these lines, and the methods where those

statements belong to.

B. Search Strategies
Once the faulty method is identified, we unfold several

search strategies for discovering other methods in the wild,

which may hold fix ingredients for repairing a given buggy

program. We consider three levels of similarity allowing for

an iterative exploration of the search space.

1) Signature-similar methods: We consider that code reuse

(e.g., copy/paste) and implementation of basic routines

(e.g., string equality) are pervasive in software projects.

Thus, it is possible to discover two implementations of

the same functionality with slight differences representing

corner-cases addressing defects. In this study, we imple-

ment a fast (although loose) search by looking up similar

method signatures. (S1 in Table II of Section IV.)

2) Syntactically similar code: When the first strategy fails,

it may become necessary to look at actual code fragments

to search for the syntactically similar methods by using a

code clone detection technique. (S2 in Table II.)

3) Semantically similar code: If the first and second strategy

fail, this may imply that the actual fix is largely different

from the buggy version with respect to syntactic similarity.

Thus, we use a semantic code search approach to dis-

covering other code fragments implementing semantically

similar functionalities. (S3 in Table II.)

We now detail how these strategies are implemented. Note

that the first strategy relies only on the method signatures,

while the other two strategies use each suspicious statement

code block as input fragment for the similar code search.
1) Methods with similar signatures: This search strategy is

straightforward. Consider the definition below:
Definition 1: Method Signature (MS) is defined as a 3-

value tuple as below:
MS = (rt,mn,Args) (1)

where rt is the return type of the method named mn, and Args
is a set of parameters (i.e., their types) of mn.

When the method is a constructor method, rt ← Null.
When the method has no parameter, Args ← ∅. When two

methods have matching signatures (rt1 = rt2 ∧ mn1 =
mn2∧Args1 = Args2) then we consider them to have similar

method signatures. Given a buggy method, we consider all

methods with similar method signatures as candidates for fix

ingredients. In practice, we consider that most fixes are simple,

and thus we rank the candidate methods by the distance with

the buggy method in terms of source lines of code count. We

also use the hashing function to dismiss methods whose code

is also identical to the buggy method.
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2) Syntactically similar code fragments: The second strat-

egy starts from the assumption that although methods may

have different signatures, they may still present inner code

fragments syntactically similar to others, and whose differ-

ences may reflect a fix ingredient to be extracted. In this

stragegy, we build on recent studies, which suggest that deep

learning embedding can offer good code representations in

numeric vectors that are useful for fast similarity computation.

To that end, we leverage Convolutional Neural Networks

(CNNs), which we used in previous studies [52] to embed

method bodies into feature vectors. We then leverage these

vectors to identify syntactically similar methods by computing

the cosine similarity.

3) Semantically similar code fragments: The third strategy

is the most relaxed search scenario where we explore more

possibilities beyond syntactic similarity. To find semantically

similar code fragments, we build on a recent state-of-the-

art code-to-code search engine [50], namely FaCoY. Unlike

other semantic code detection approaches, FaCoY is static

and can scale to a large-scale search space dataset such as

GitHub. In this work, we leverage the package Virtual Machine

provided by the authors of FaCoY and input the buggy method

statements code blocks for search. The engine yields a ranked

list of code fragments, which are semantically similar to the

body of buggy methods that have been used as input query.

C. Generate and Validate

Our fixing process unfolds two different scenarios depend-

ing on the strategy used to find the similar code. For the first

strategy (where method signatures are the same), we perform

a naı̈ve transplantation of the body of the searched similar

method into that of a given buggy method as a replacement.

For the second and third strategies of code search, the

methods, however, may not have the same signatures. We

must identify a way to transform the necessary code into

the buggy code so that the resulting program may still be

compilable. To that end, we expect to find differences relevant

to the statements actually highlighted as being involved in the

fault: these are statements whose code lines are pointed out

by the fault localization tools. We refer to them as pivot state-
ments, which must be analyzed and modified with contextual

information differences between buggy code and discovered

similar methods. In this study, to speed up the search of

fix ingredients and reduce the effect of fault localization

false positives, we focus on four statements types (namely

ExpressionStatement, IfStatement, VariableDeclarationStatement,
and ReturnStatement); these statements are reported in the

literature as the most recurring buggy statements [53].

a) Pivot IfStatement: when a pivot statement is of such

type, we identify the differences between its constituting parts

(conditional expression and operator) and attempt to transform

a fix ingredient based on heuristics. For example, if the

conditional expression is an infix expression (e.g., a > b) with

the same type as another infix expression in a searched similar

method (e.g., a < b), we borrow the operator as a fix ingredient

and mutate the buggy code to match the other expression.

b) Other Pivot Statements: if the pivot statement is one

of the three other types (ExpressionStatement, VariableDecla-
rationStatement, and ReturnStatement), we first check whether

there is an associated IfStatement preceding or encompassing

the statement. When an IfStatement is identified as relevant

to one of those pivot statements (i.e., a variable in the pivot

statement is used in the conditional statement), we treat this

statement as a pivot statement. Indeed, the fault localization

may not have highlighted such a statement, but given that

condition-check bugs are pervasive, the fix may actually be

relevant to that part. At this point, we apply the fix ingredient

to searching the pivot Ifstatement. Nevertheless, in this case,

when the buggy pivot statement has an associated IfStatement
but the candidate similar method does not have an IfStatement,
we simply delete the IfStatement from our buggy method as

a repair action. Similarly, if the pivot statement is matching

a statement in the candidate method body and that statement

has a related IfStatement while the buggy pivot statement does

not have any, we simply insert an IfStatement after mutating its

conditional expression with variables used in the buggy pivot

statement. Finally, we further check the differences between

the buggy pivot statement and the candidate one, and thus

mutate the buggy statement with the differences to generate

patches. The code of our prototype patch generator (reflecting

the heuristics that we implement) as well as the patches that we

have generated (cf. Section IV) can be found in our replication

package: https://github.com/AutoProRepair/LSRepair.

IV. ASSESSMENT

We now present experimental results obtained with LSRe-
pair. Given the preliminary nature of this study, we also

provide discussions about the limitations and the short-term

challenges to be addressed in this research line.

A. Research Question

Our assessment is built for answering a single question: to
what extent real-world bugs can be repaired by LSRepair?

We expect that a reasonable performance would lead to:

• More investigations, by the APR community, of program

repair based on code search, specifically on issues with

transplanting fix ingredients.

• Extensive assessment of state-of-the-art approaches to re-

pair, in order to focus on more challenging bugs (i.e., those

for which it is difficult to find repair ingredients, or the

necessary changes are entangled).

Overall, our experiments set a clear baseline given the straight-

forward nature of the search and patch generation strategies.

B. Experimental Setup

1) Repair benchmark: In this study, we perform experi-

ments based on the Defects4J [57] benchmark, which includes

a manually reviewed set of real-world Java bugs. It has been

proposed to enable reproducible studies in the software testing

community, but it is recently becoming a de-facto benchmark

for repair tools targeting Java programs. Defects4J lists 395

real bugs from six open-source Java projects, and comes with
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TABLE I: Comparison of the number of fixed bugs by different APR tools.
LSRepair jGenProg [9] HDRepair [10] Nopol [28] ACS [29] ssFix [54] ELIXIR [55] SketchFix [56] CapGen [13]

# bugs 19/38 5/29 13/16 5/35 18/21 20/60 26/41 19/26 21/25

† In each column, the left and right numbers denote the number of correct and plausible patches generated by each APR tool.

TABLE II: The bugs correctly repaired by LSRepair.
Bug ID S1 S2 S3 Time Search Space

Chart-1 � - 10
Chart-4 � 3m12s 30
Chart-11 � 37s 2
Lang-21 � 12s 3
Lang-24 � 19m17s 142
Lang-29 � - 10
Lang-46 � 1m59s 16
Lang-48 � 30s 9
Lang-51 � 58s 30
Lang-52 � 15s 5
Lang-54 � 19s 25
Math-63 � 8m3s 27
Math-70 � 37s 40
Math-75 � 15s 20
Math-79 � 17s 549
Math-89 � - 10
Math-91 � 13s 30
Math-94 � 1m43s 182
Mockito-13 � 43m32s 6

h: hour, m: minute, s: second. Time for S2 and S3 is not provided (to avoid bias) since
the two strategies need to preprocess suspicious methods before code search.

test cases for verifying fix plausibility as well as the correct
patches supplied by developers for each bug.

2) Code search space: We leverage the GitHub repository

to build the search space, namely a Method Index where all

methods from java projects are indexed. Although we could

list almost 3 million projects tagged with Java as the main

language in GitHub, we reduce the noise of toy projects [58]

by selecting projects that have been forked at least once by

other developers and further dropping out projects where the

source code includes non-ascii characters. We also constrain

the search space by filtering out test-related code files (i.e.,

having ‘test’ in their name), setter and getter methods (which

are trivial methods), as well as constructor and main methods

(which are too specific and may pollute the search space).

Note that, for fairness, we also do not consider in our dataset

project files (including cloned programs) that are associated to

the Defects4J bugs. Overall, we collected 10,449 Java projects

in GitHub, of which we indexed 11,043,044 methods.

C. Evaluation of Generated Patches

Given a Defects4J bug, we execute the test suite to localize

the buggy method and generate patches by using our code

search-based strategy. Then, for each of generated patches,

we execute the test suites again. The program is said to

be fully repaired if the patched program passes all test

cases. Table II lists all Defects4J bugs that LSRepair can

successfully repair. Most of the bugs are fixed by the first

two code search strategies. Nevertheless, we have cases where

syntactic similarity and semantic similarity have provided

relevant fix ingredients that were possible to exploit.

Nevertheless, in light with recent studies [59], we note that

passing all test cases only indicates that the generated patch

is a plausible fix. To check for correctness, we manually

compare the suggested plausible patch against the actual

developer patch in the Defects4J benchmark.

D. Quantitative Comparison with State-of-the-art APR Tools

Table I reports on the current achievements of APR tools

on the Defects4J dataset and comparison with the results of

LSRepair. For each column, a pair of numbers are reported,

where the left and right are the number of correct and plausible

patches, respectively. We note that our approach provides com-

parable performance with the state-of-the-art tools. Finally, we

have identified 10 bugs, which are fixed by our approach and

are not yet fixed by state-of-the-art APR tools. All details about

the results are available in our replication package.

E. Runtime Performance

We note that the repair of certain bugs can be fast when

the search space (i.e., # similar methods) is small. Table II

reports the time elapsed to fix each bug, which are from a few

seconds to dozens of minutes.

V. DISCUSSIONS

Code Transformation: The main limitation of our ap-

proach comes from the difficulty to explore and exploit auto-

matically the fix ingredients available in the identified similar

methods. This is known as the code transform problem [20]

common to software transplantation approaches. Our prototype

implementation uses very straightforward heuristics to trans-

form the ingredients. In previous work, SearchRepair achieved

good performance on the IntroClass datasets of simple C

programs by using a simple procedure of textual replacement

for renaming variables. We explored a similar strategy. Never-

theless, Defects4J’s real-world bugs are known [60] to require

more advanced code transform [61]–[63] techniques, which

we plan to explore in future work.

On the Similar Code Search Problem: To improve the

efficiency in patch generation, it is necessary to implement a

re-ranking scheme of similar code. In this preliminary study,

we used naı̈ve heuristics attempting to prioritize code, based

on the similarity measures (e.g., syntactic and semantic) with

a given buggy code, i.e., the most similar code gets the highest

ranking. However, in the future work, we need a smarter

approach to prioritizing simialr code based on the likelihood

of fixing a given bug, instead of similarity. Such an approach

can build on recurrent change patterns for fixing bugs [53].

Threats to Validity: The main threat to the validity of our

study is the method-level granularity. Bugs located in a class

or field declaration [53], it cannot be addressed by our tool.

VI. CONCLUSION

In this paper, we investigated the potential of using code

search strategies on-the-fly to find fix ingredients for auto-

mated program repair. Our prototype implementation showed

that LSRepair can correctly fix 19 bugs from Defects4J, and

10 of them are not yet fixed by other APR tools. Although such

number might appear small, it should be reflected against the
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current status in the field of Java APR, where state-of-the-

art APR tools can only fixed a few more (1 to 7) bugs than

our tool. We thus propose this approach and the associated

results as a baseline for the future research direction on APR

techniques based on code search.
Acknowledgements. Work supported by the Fonds National

de la Recherche (FNR), Luxembourg, through RECOMMEND
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