
TBar: Revisiting Template-Based Automated Program Repair

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé
University of Luxembourg, Luxembourg

{kui.liu,anil.koyuncu,dongsun.kim,tegawende.bissyande}@uni.lu

ABSTRACT

We revisit the performance of template-based APR to build com-

prehensive knowledge about the effectiveness of fix patterns, and

to highlight the importance of complementary steps such as fault

localization or donor code retrieval. To that end, we first investi-

gate the literature to collect, summarize and label recurrently-used

fix patterns. Based on the investigation, we build TBar, a straight-

forward APR tool that systematically attempts to apply these fix

patterns to program bugs. We thoroughly evaluate TBar on the De-

fects4J benchmark. In particular, we assess the actual qualitative and

quantitative diversity of fix patterns, as well as their effectiveness

in yielding plausible or correct patches. Eventually, we find that,

assuming a perfect fault localization, TBar correctly/plausibly fixes

74/101 bugs. Replicating a standard and practical pipeline of APR

assessment, we demonstrate that TBar correctly fixes 43 bugs from

Defects4J, an unprecedented performance in the literature (includ-

ing all approaches, i.e., template-based, stochastic mutation-based

or synthesis-based APR).

CCS CONCEPTS

· Software and its engineering → Software verification and

validation; Software defect analysis; Software testing and debug-

ging.

KEYWORDS

Automated program repair, fix pattern, empirical assessment.

ACM Reference Format:

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.

TBar: Revisiting Template-Based Automated Program Repair. In Proceedings

of the 28th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’19), July 15ś19, 2019, Beijing, China. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3293882.3330577

1 INTRODUCTION

Automated Program Repair (APR) has progressively become an

essential research field. APR research is indeed promising to im-

prove modern software development by reducing the time and costs

associated with program debugging tasks. In particular, given that

faults in software cause substantial financial losses to the software

industry [8, 54], there is a momentum in minimizing the time-to-fix

intervals by APR. Recently, various APR approaches [10, 11, 17,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’19, July 15ś19, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3330577

18, 21, 23, 25, 26, 29, 31, 36, 38, 39, 41, 42, 44, 51, 53, 67, 69, 76, 77]

have been proposed, aiming at reducing manual debugging efforts

through automatically generating patches.

An early strategy of APR is to generate concrete patches based

on fix patterns [23] (also referred to as fix templates [40] or program

transformation schemas [17]). This strategy is now common in the

literature and has been implemented in several APR systems [13,

17, 23, 24, 38ś40, 50, 62]. Kim et al. [23] showed the usefulness of fix

patterns with PAR. Saha et al. [62] later proposed ELIXIR by adding

three new patterns on top of PAR [23]. Durieux et al. [13] proposed

NPEfix to repair null pointer exception bugs, using nine pre-defined

fix patterns. Long et al. designed Genesis [41] to infer fix patterns

for specific three classes of defects. Liu and Zhong [40] explored

posts from Stack Overflow to mine fix patterns for APR. Hua et al.

proposed SketchFix [17], a runtime on-demand APR tool with six

pre-defined fix patterns. Recently, Liu et al. [39] used the fix patterns

of FindBugs static violations [35] to fix semantic bugs. Concurrently,

Ghanbari and Zhang [15] showed that straightforward application

of fix patterns (i.e., mutators) on Java bytecode is effective for repair.

They do not, however, provide a comprehensive assessment of the

repair performance yielded by each implemented mutator.

Although the literature has reported promising results with fix

patterns-based APR, to the best of our knowledge, no extensive

assessment on the effectiveness of various patterns is performed. A

few most recent approaches [17, 39, 40] reported which benchmark

bugs are fixed by each of their patterns. Nevertheless, many relevant

questions on the effectiveness of fix patterns remain unanswered.

This paper.Our work thoroughly investigates to what extent fix

patterns are effective for program repair. In particular, emphasizing

on the recurrence of some patterns in APR, we dissect their actual

contribution to repair performance. Eventually, we explore three

aspects of fix patterns:

• Diversity: How diverse are the fix patterns used by the state-of-

the-art? We survey the literature to identify and summarize the

available patterns with a clear taxonomy.

• Repair performance: How effective are the different patterns? In

particular, we investigate the variety of real-world bugs that can

be fixed, the dissection of repair results, and their tendency to

yield plausible or correct patches.

• Sensitivity to fault localization noise: Are all fix patterns similarly

sensitive to the false positives yielded by fault localization tools?

We investigate sensitivity by assessing plausible patches as well

as the suspiciousness rank of correctly-fixed bug locations.

Towards realizing this study, we implement an automated patch

generation system, TBar (Template-Based automated program repair),

with a super-set of fix patterns that are collected, summarized, cu-

rated and labeled from the literature data. We evaluate TBar on the

Defects4J [20] benchmark, and provide the replication package in

a public repository: https://github.com/SerVal-DTF/TBar.

Overall, our investigations have yielded the following findings:

31

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577
https://github.com/SerVal-DTF/TBar

ISSTA ’19, July 15–19, 2019, Beijing, China Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé

(1) Record performance: TBar creates a new higher baseline of

repair performance: 74/101 bugs are correctly/plausibly fixed

with perfect fault localization information and 43/81 bugs are

fixed with realistic fault localization output, respectively.

(2) Fix pattern selection:Most bugs are correctly fixed only by

a single fix pattern while other patterns generate plausible

patches. This implies that appropriate pattern prioritization can

prevent from plausible/incorrect patches. Otherwise, APR tools

might be overfitted in plausible but incorrect patches.

(3) Fix ingredient retrieval: It is challenging for template-based

APR to select appropriate donor code, which is an ingredient of

patch generation when using fix patterns. Inappropriate donor

code may cause plausible but incorrect patch generation. This

motivates a new research direction: donor code prioritization.

(4) Fault localization noise: It turns out that fault localization

accuracy has a large impact on repair performance when using

fix patterns in APR (e.g., applying a fix pattern to incorrect

location yields plausible/incorrect patches).

2 FIX PATTERNS

For this study, we systematically review1 the APR literature to iden-

tify approaches that leverage fix patterns. Concretely, we consider

the program repair website [3], a bibliography survey of APR [52],

proceedings of software engineering conference venues and jour-

nals as the source of relevant literature. We focus on approaches

dealing with Java program bugs, and manually collect, from the

paper descriptions as well as the associated artifacts, all pattern

instances that are explicitly mentioned. Table 1 summarizes the

identified relevant literature and the quantity of identified fix pat-

terns targeting Java programs. Note that the techniques described

in the last four papers (i.e., HDRepair, ssFix, CapGen, and SimFix

papers) do not directly use fix patterns: they leverage code change

operators or rules, which we consider similar to using fix patterns.

Table 1: Literature review on fix patterns for Java programs.

Authors APR tool name
of fix
patterns

Publication
Venue

Publication
Year

Pan et al. [55] - 27 EMSE 2009
Kim et al. [23] PAR 10 (16∗) ICSE 2013
Martinez et al. [49] jMutRepair 2 ISSTA 2016
Durieux et al. [13] NPEfix 9 SANER 2017
Long et al. [41] Genesis 3 (108∗) FSE 2017
D. Le et al. [25] S3 4 FSE 2017
Saha et al. [62] ELIXIR 8 (11∗) ASE 2017
Hua et al. [17] SketchFix 6 ICSE 2018
Liu and Zhong [40] SOFix 12 SANER 2018
Koyuncu et al. [24] FixMiner 28 UL Tech Report 2018
Liu et al. [35] - 174 TSE 2018
Rolim et al. [60] REVISAR 9 UFERSA Tech Report 2018
Liu et al. [39] AVATAR 13 SANER 2019

D. Le et al. [29] HDRepair† 11 SANER 2016

Xin and Reiss [74] ssFix† 34 ASE 2017

Wen et al. [69] CapGen† 30 ICSE 2018

Jiang et al. [18] SimFix† 16 ISSTA 2018

∗In the PAR paper [23], 10 fix patterns are presented, but 16 fix patterns are released online [2]. In
Genesis, 108 code transformation schemas are inferred for three kinds of defects. In ELIXIR, there is
one fix pattern that consists of four sub-fix patterns.

2.1 Fix Patterns Inference

Fix patterns have been explored with the following four ways:

(1) Manual Summarization: Pan et al. [55] identified 27 fix pat-

terns from patches of five Java projects to characterize the fix

1For conferences and journals, we consider ICSE, FSE, ASE, ISSTA, ICSME, SANER,
TSE, TOSEM, and EMSE. The search keywords are ‘program’+‘repair’, ‘bug’ +‘fix’.

ingredients of patches. They do not however apply the identi-

fied patterns to fix actual bugs. Motivated by this work, Kim

et al. [23] summarized 10 fix patterns manually extracted from

62,656 human-written patches collected from Eclipse JDT.

(2) Mining: Long et al. [41] proposed Genesis, to infer fix pat-

terns for three kinds of defects from existing patches. Liu and

Zhong [40] explored fix patterns from Q&A posts in Stack Over-

flow. Koyuncu et al. [24] mined fix patterns at the AST level

from patches by using code change differentiating tool [14]. Liu

et al. [35] and Rolim et al. [60] proposed to mine fix patterns

for static analysis violations. In general, mining approaches

yield a large number of fix patterns, which are not always about

addressing deviations in program behavior. For example, many

patterns are about code style [39]. Recently, with AVATAR [39],

we proposed an APR tool that considers static analysis violation

fix patterns to fix semantic bugs.

(3) Pre-definition: Durieux et al. [13] pre-defined 9 repair actions

for null pointer exceptions by unifying the related fix patterns

proposed in previous studies [12, 22, 45]. On the top of PAR [23],

Saha et al. [62] further defined 3 new fix patterns to improve the

repair performance. Hua et al. [17] proposed an APR tool with

six pre-defined so-called code transformation schemas. We also

consider operator mutations [49] as pre-defined fix patterns, as

the number of operators and mutation possibilities is limited

and pre-set. Xin and Reiss [74] proposed an approach to fixing

bugs with 34 predefined code change rules at the AST level. Ten

of the rules are not for transforming the buggy code but for

the simple replacement of multi-statement code fragments. We

discard these rules from our study to limit bias.

(4) Statistics: Besides formatted fix patterns, researchers [18, 69]

also explored to automate program repair with code change in-

structions (at the abstract syntax tree level) that are statistically

recurrent in existing patches [18, 37, 48, 68, 81]. The strategy is

then to select the top-n most frequent code change instructions

as fix ingredients to synthesize patches.

2.2 Fix Patterns Taxonomy

After manually assessing all fix patterns presented in the literature

(cf. Table 1), we identified 15 categories of patterns labeled based

on the code context (e.g., a cast expression), the code change ac-

tions (e.g., insert an łifž statement with łinstanceofž check) as well

as the targets (e.g., ensure the program will no throw a ClassCastEx-

ception.). A given category may include one or several specialized

sub-categories. Below, we present the labeled categories and provide

the associated 35 Code Change Patterns described in simplified

GNU diff pattern for easy understanding.

FP1. Insert Cast Checker. Inserting an instanceof check before

one buggy statement if this statement contains at least one unchecked

cast expression. Implemented in: PAR, Genesis, AVATAR, SOFix†,

HDRepair†, SketchFix†, CapGen†, and SimFix†.
+ if (exp instanceof T) {

var = (T) exp;

+ }

where exp is an expression (e.g., a variable expression) and T is

the casting type, while ł.ž means the subsequent statements

dependent on the variable var. Note that, ł†ž denotes that the fix

pattern is not specifically illustrated in the corresponding APR tools

32

TBar: Revisiting Template-Based Automated Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

since the tools have some abstract fix patterns that can cover the fix

pattern. The same notation applies to the following descriptions.

FP2. Insert Null Pointer Checker. Inserting a null check before

a buggy statement if, in this statement, a field or an expression

(of non-primitive data type) is accessed without a null pointer

check. Implemented in: PAR, ELIXIR, NPEfix, Genesis, FixMiner,

AVATAR, HDRepair†, SOFix†, SketchFix†, CapGen†, and SimFix†.
FP2.1: + if (exp != null) {

...exp...;

+ }

FP2.2: + if (exp == null) return DEFAULT_VALUE;

...exp...;

FP2.3: + if (exp == null) exp = exp1;

...exp...;

FP2.4: + if (exp == null) continue;

...exp...;

FP2.5: + if (exp == null)

+ throw new IllegalArgumentException(...);

...exp...;

where DEFAULT_VALUE is set based on the return type (RT) of the

encompassing method as below:

DEFAULT_VALUE =




false, if RT = boolean;

0, if RT = pr imitive type ;

new String(), if RT = Str inд;

łreturn;ž, if RT = void ;

null, otherwise .

(1)

exp1 is a compatible expression in the buggy program (i.e., that has

the same data type as exp). FP2.4 is specific to the case of a buggy

statement within a loop (i.e., for or while).

FP3. Insert Range Checker. Inserting a range checker for the

access of an array or collection if it is unchecked. Implemented

in: PAR, ELIXIR, Genesis, SketchFix, AVATAR, SOFix† and SimFix†.
+ if (index < exp.length) {

...exp[index]...;

+ }

OR

+ if (index < exp.size()) {

...exp.get(index)...;

+ }

where exp is an expression representing an array or collection.

FP4. Insert Missed Statement. Inserting a missing statement be-

fore, or after, or surround a buggy statement. The statement is either

an expression statement with a method invocation, or a return/try-

catch/if statement. Implemented in: ELIXIR, HDRepair, SOFix,

SketchFix, CapGen, FixMiner, and SimFix.
FP4.1: + method(exp);

FP4.2: + return DEFAULT_VALUE;

FP4.3: + try {

statement;

+ } catch (Exception e) { ... }

FP4.4: + if (conditional_exp) {

statement;

+ }

where exp is an expression from a buggy statement. It may be empty

if the method does not take any argument. FP4.4 excludes three fix

patterns (FP1, FP2, and FP3) that are used with specific contexts.

FP5. Mutate Class Instance Creation.Replacing a class instance

creation expression with a cast super.clone() method invocation if

the class instance creation is in an overridden clone method. Im-

plemented in: AVATAR.
public Object clone() {

- ... new T();

+ ... (T) super.clone();

}

where T is the class name of the current class containing the buggy

statement.

FP6. Mutate Conditional Expression.Mutating a conditional ex-

pression that returns a boolean value (i.e., true or false) by either

updating it, or removing a sub conditional expression, or inserting

a new conditional expression into it. Implemented in: PAR, ssFix,

S3, HDRepair, ELIXIR, SketchFix, CapGen, SimFix, and AVATAR.
FP6.1: - ...condExp1...

+ ...condExp2...

FP6.2: - ...condExp1 Op condExp2...

+ ...condExp1...

FP6.3: - ...condExp1...

+ ...condExp1 Op condExp2...

where condExp1 and condExp2 are conditional expressions. Op is the

logical operator ‘||’ or ‘&&’. Themutation of operators in conditional

expressions is not summarized in this fix pattern but in FP11.

FP7. Mutate Data Type. Replacing the data type in a variable dec-

laration or a cast expression with another data type. Implemented

in: PAR, ELIXIR, FixMiner, SOFix, CapGen, SimFix, AVATAR, and

HDRepair†.
FP7.1: - T1 var ...;

+ T2 var ...;

FP7.2: - ...(T1) exp...;

+ ...(T2) exp...;

where both T1 and T2 denote two different data types. exp means

the being casted expression (including variable).

FP8. Mutate Integer Division Operation.Mutating the integer

division expressions to return a float value, by mutating its divisor

or divider to make them be of type float.Released by Liu et al. [35],

it is not implemented in any APR tool yet.
FP8.1: - ...dividend / divisor...

+ ...dividend / (double or float) divisor...

FP8.2: - ...dividend / divisor...

+ ...(double or float) dividend / divisor...

FP8.3: - ...dividend / divisor...

+ ...(1.0 / divisor) * dividend...

where dividend and divisor are integer number literals or integer-

returned expressions (including variables).

FP9. Mutate Literal Expression. Mutating boolean, number, or

String literals in a buggy statement with other relevant literals, or

correspondingly-typed expressions. Implemented in: HDRepair,

S3, FixMiner, SketchFix, CapGen, SimFix and ssFix†.
FP9.1: - ...literal1...

+ ...literal2...

FP9.2: - ...literal1...

+ ...exp...

where literal1 and literal2 are of the same type literals, but having

different values (e.g., literal1 is true, literal2 is false). exp denotes

any expression value of the same type as literal1.

FP10. Mutate Method Invocation Expression.Mutating the bu-

ggy method invocation expression by adapting its method name or

arguments. This pattern consists of four sub fix patterns:

(1) Replacing the method name with another one which has a

compatible return type and same parameter type(s) as the

buggy method that was invoked.

(2) Replacing at least one argument with another expression

which has a compatible data type. Replacing a literal or

variable is not included in this fix pattern, but rather in

FP9 and FP13 respectively.

(3) Removing argument(s) if the method invocation has the

suitable overridden methods.

33

ISSTA ’19, July 15–19, 2019, Beijing, China Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé

(4) Inserting argument(s) if the method invocation has the suit-

able overridden methods.

Implemented in: PAR, HDRepair, ssFix, ELIXIR, FixMiner, SOFix,

SketchFix, CapGen, and SimFix.
FP10.1: - ...method1(args)...

+ ...method2(args)...

FP10.2: - ...method1(arg1, arg2, ...)...

+ ...method1(arg1, arg3, ...)...

FP10.3: - ...method1(arg1, arg2, ...)...

+ ... method1(arg1, ...)...

FP10.4: - ...method1(arg1, ...)...

+ ...method1(arg1, arg2, ...)...

wheremethod1 andmethod2 are the names of invokedmethods. args,

arg1, arg2 and arg3 denote the argument expressions in the method

invocation. Note that, code changes on class instance creation,

constructor and super constructor expressions are also included in

these four fix patterns.

FP11. Mutate Operators. Mutating an operation expression by

mutating its operator(s). We divide this fix pattern into three sub-

fix patterns following the operator types and mutation actions.

(1) Replacing one operator with another operator from the same

operator class (e.g., relational or arithmetic).

(2) Changing the priority of arithmetic operators.

(3) Replacing instanceof operator with (in)equality operators.

Implemented in: HDRepair, ssFix, ELIXIR, S3, jMutRepair, SOFix,

FixMiner, SketchFix, CapGen, SimFix, AVATAR, and PAR†.
FP11.1: - ...exp1 Op1 exp2...

+ ...exp1 Op2 exp2...

FP11.2: - ...(exp1 Op1 exp2) Op2 exp3...

+ ...exp1 Op1 (exp2 Op2 exp3)...

FP11.3: - ...exp instanceof T...

+ ...exp != null...

where exp denotes the expressions in the operation and Op is the

associated operator.

FP12. Mutate Return Statement. Replacing the expression (ex-

cluding literals, variables, and conditional expressions) in a return

statement with a compatible expression. Implemented in: ELIXIR,

SketchFix, and HDRepair†.
- return exp1;

+ return exp2;

where exp1 and exp2 represent the returned expressions.

FP13. Mutate Variable. Replacing a variable in a buggy statement

with a compatible expression (including variables and literals). Im-

plemented in: S3, SOFix, FixMiner, SketchFix, CapGen, SimFix,

AVATAR, and ssFix†.
FP13.1: - ...var1...

+ ...var2...

FP13.2: - ...var1...

+ ...exp...

where var1 denotes a variable in the buggy statement. var2 and exp

represent respectively a compatible variable and expression of the

same type as var1.

FP14. Move Statement.Moving a buggy statement to a new po-

sition. Implemented in: PAR.
- statement;

......

+ statement;

where statement represents the buggy statement.

FP15. Remove Buggy Statement. Deleting entirely the buggy

statement from the program. Implemented in: HDRepair, SOFix,

FixMiner, CapGen, and AVATAR.

FP15.1:

- statement;

......

FP15.2: - methodDeclaration(Arguments) {

-; statement;......

- }

where statement denotes any identified buggy statement, andmethod

represents the encompassing method.

2.3 Analysis of Collected Patterns

We provide a study of the collected fix patterns following quantita-

tive (overall set) and qualitative (per fix pattern) aspects. Table 2

assesses the fix patterns in terms of four qualitative dimensions:

(1) Change Action: what high-level operations are applied on a

buggy code entity? On the one hand, Update operations replace

the buggy code entity with retreived donor code, while Delete

operations just remove the buggy code entity from the program.

On the other hand, Insert operations insert an otherwise missing

code entity into the program, and Move operations change the

position of the buggy code entity to a more suitable location in

the program.

(2) Change Granularity: what kinds of code entities are directly

impacted by the change actions? This entity can be an entire

Method, a whole Statement or specifically targeting an Expres-

sion within a statement.

(3) Bug Context: what specific AST nodes of code entities are

used to match fix patterns.

(4) Change Spread: the number of statements impacted by each

fix pattern.

Quantitatively, as summarized in Table 3, 17 fix patterns are

related to Update change actions, 4 fix patterns implement Delete

actions, 13 fix patterns Insert extra code, and only 1 fix pattern is

associated to Move change action.

In terms of change granularity, 21 and 17 fix patterns are applied

respectively at the expression and statement code entity levels 2.

Only 1 fix pattern is suitable at the method level.

Overall, we note that 30 fix patterns are applicable to a single

statement, while 7 fix patterns can mutate multiple statements at

the same time. Among these patterns, FP14 and FP15.1 can both

mutate single and multiple statements.

3 SETUP FOR REPAIR EXPERIMENTS

In order to assess the effectiveness of fix patterns in the taxonomy

presented in Section 2, we design program repair experiments using

the fix patterns as the main ingredients. The produced APR system

is then assessed on a widely-used benchmark in the repair commu-

nity to allow reliable comparison against the state-of-the-art.

3.1 TBar: a Baseline APR System

Based on the investigations of recurrently-used fix patterns, we

build TBar, a template-based APR tool which integrates the 35 fix

patterns presented in Section 2. We expect the APR community to

consider TBar as a baseline APR tool: new approachesmust come up

with novel techniques for solving auxiliary issues (e.g., repair pre-

cision, search space optimization, fault locations re-prioritization,

2Among these, four sub-fix patterns (FP10) can be applied to either expressions or
statements, given that constructor and super-constructor code entities in Java program
are grouped into statement level in terms of abstract syntax tree by Eclipse JDT.

34

TBar: Revisiting Template-Based Automated Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

Patch

Candidates

Selected

fix pattern

Patch Generation

Pass

Fail

Patch Validation

Patch

Testing

Fix Pattern Selection

FL with

GZoltar

A ranked list

of suspicious

code locations

Buggy Program

Fix pattern

data base

Code

AST

Mutate

suspicious code

Next

fix

patternNext suspicious code fragment

Fault Localization

Test Suite

Next

patch

candidate

…

Figure 1: The overall workflow of TBar.

Table 2: Change properties of fix patterns.

Fix
Pattern

Change
Action

Change
Graunlarity

Bug Context
Change
Spread

FP1 Insert statement cast expression single

FP2.1

Insert statement

a variable or
an expression
returning non-

primitive-type data

single

FP2.(2,3,4,5) dual

FP3 Insert statement
element access
of array or

collection variable
single

FP4.(1,2,3,4) Insert statement any statement single

FP5 Update expression
class instance

creation expression
and clone method

single

FP6.1 Update
expression conditional expression singleFP6.2 Delete

FP6.3 Insert

FP7.1 Update expression
variable declaration

expression
single

FP7.2 Update expression cast expression single

FP8.(1,2,3) Update expression
integral division

expression
single

FP9.(1,2) Update expression literal expression single

FP10.1
Update

expression,
or statement

method invocation,
class instance creation,

constructor, or
super constructor

single
FP10.2
FP10.3 Delete
FP10.4 Insert

FP11.1 Update expression
assignment or
infix-expression

single

FP11.2 Update expression
arithmetic

infix-expression
single

FP11.3 Update expression instance of expression single

FP12 Update expression return statement single

FP13.(1, 2) Update expression variable expression single

FP14 Move statement any statement
single or
multiple

FP15.1 Delete statement any statement
single or
multiple

FP15.2 Delete method any statement multiple

Table 3: Diversity of fix patterns w.r.t change properties.

Action Type # fix patterns Granularity # fix patterns Spread # fix patterns

Update 17 Expression 21 Single-
30

Delete 4 Statement 17 Statement
Insert 13 Method 1 Multiple-

7
Move 1 Statements

etc.) to boost automated program repair beyond the performance

that a straightforward application of common fix patterns can offer.

Figure 1 overviews the workflow that we have implemented in TBar.

We describe in the following subsections the role and operation of

each process as well as all necessary implementation details.

3.1.1 Fault Localization. Fault localization is necessary for template-

based APR as it allows to identify a list of suspicious code lo-

cations (i.e., buggy statements) on which to apply the fix pat-

terns. TBar leverages the GZoltar [9] framework to automate the

execution of test cases for each buggy program. In this frame-

work, we use the Ochiai [4] ranking metric to compute the sus-

piciousness scores of statements that are likely to be the faulty

code locations. This ranking metric has been demonstrated in

several empirical studies [56, 65, 73, 78] to be effective for lo-

calizing faults in object-oriented programs. The GZoltar frame-

work for fault localization is also widely used in the literature of

APR [18, 24, 34, 38, 39, 49, 69, 74, 76, 77], allowing for a fair assess-

ment of TBar’s performance against the state-of-the-art.

3.1.2 Fix Pattern Selection. In the execution of the repair pipeline,

once the fault localization process yields a list of suspicious code

locations, TBar sequentially attempts to select the encoded fix pat-

terns from its database of fix patterns for each statement in the

locations list. The selection of fix patterns is conducted in a naïve

way based on the AST context information of each suspicious state-

ment. Specifically, TBar sequentially traverses each node of the

suspicious statement AST from its first child node to its last leaf

node and tries to match each node against the context AST of the fix

pattern. If a node can match any bug context presented in Table 2,

a related fix pattern will be matched to generate patch candidates

with the corresponding code change pattern. If the node is not a

leaf node, TBar keeps traversing its children nodes. For example,

if the first child node of a suspicious statement is a method in-

vocation expression, it will be first matched with FP10. Mutate

Method Invocation Expression fix pattern. If the children nodes

of the method invocation start from a variable reference, it will be

matched with FP13. Mutate Variable fix pattern as well. Other

fix patterns follow the same manner. After all expression nodes of

a suspicious statement are matched with fix patterns, TBar further

matches fix patterns from statement and method levels respectively.

3.1.3 Patch Generation and Validation. When a matching fix pat-

tern is found (i.e., a pattern is selected for a suspicious statement),

a patch is generated by mutating the statement, then the patched

program is run against the test suite. If the patched program passes

all tests successfully, the patch candidate is considered as a plau-

sible patch [58]. Once such a plausible patch is identified, TBar

stops generating other patch candidates for this bug to fix bugs in a

standard and practical program repair workflow [38, 39, 49, 76, 77],

but does not generate all plausible patches for each bug, unlike

PraPR [15]. Otherwise, the pattern selection and patch generation

process is resumed until all AST nodes of buggy code are traversed.

When several fix pattern contexts match one node, their actions

are used for ordering: TBar prioritizes Update over Insert that is

over Delete, which is prioritized over Move. In case of multiple

donor code options for a given fix pattern, the candidate patches

(each generated with a specific donor code) are ordered based on

the distances between donor code node and buggy code node in the

AST of the buggy code file: priority is given to smaller distances.

Due to space limitation, detailed steps, illustrated in an algorithmic

pseudo-code, are released in the replication package.

Considering that some buggy programs have several buggy lo-

cations, if a patch candidate can make a buggy program pass a

sub-set of previously failing test cases without failing any previ-

ously passing test cases, this patch is considered as a plausible

sub-patch of this buggy program. TBar will further validate other

patch candidates, until either a plausible patch is generated, or all

patch candidates are validated, or TBar exhausts the time limitation

set (i.e., three hours) for repair attempts.

35

ISSTA ’19, July 15–19, 2019, Beijing, China Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé

If a plausible patch is generated, we further manually check

the equivalence between this patch and the ground-truth patch

provided by developers and available in the Defects4J benchmark.

If the plausible patch is semantically equivalent to the ground-truth

patch, the plausible patch is considered as correct. Otherwise, it is

only considered as plausible. We offer a replication package with

extensive details on pattern implementation within TBar. Source

code is publicly available in the aforementioned GitHub repository.

3.2 Assessment Benchmark

For our empirical assessments, we selected theDefects4J [20] dataset

as the evaluation benchmark of TBar. This benchmark includes

test cases for buggy Java programs with the associated developer

fixes. Defects4J is an ideal benchmark for the objective of this study,

since it has been widely used by most recent state-of-the-art APR

systems targeting Java program bugs. Table 4 provides summary

statistics on the bugs and test cases available in the version 1.2.0 [1]

of Defects4J which we use in this study.

Table 4: Defects4J dataset information.

Project
Chart
(C)

Closure
(Cl)

Lang
(L)

Math
(M)

Mockito
(Mc)

Time
(T)

Total

bugs 26 133 65 106 38 27 395
test cases 2,205 7,927 2,245 3,602 1,457 4,130 21,566

fixed bugs by all
APR tools (cf. [38, 39])

13 16 28 37 3 4 101

Overall, we note that, to date, 101 Defects4J bugs have been

correctly fixed by at least one APR tool published in the literature.

Nevertheless, we recall that SimFix [18] currently holds the record

number of bugs fixed by a single tool, which is 34.

4 ASSESSMENT

This section presents and discusses the results of repair experiments

with TBar. In particular, we conduct two experiments for:

• Experiment #1: Assessing the effectiveness of the various

fix patterns implemented in TBar. To avoid the bias that fault

localization can introduce with its false positives (cf. [38]),

we directly provide perfect localization information to TBar.

• Experiment #2: Evaluating TBar in a normal program re-

pair scenario. We investigate in particular the tendency of

fix patterns to produce more or less incorrect patches.

4.1 Repair Suitability of Fix Patterns

Our first experiment focuses on assessing the patch generation per-

formance of fix patterns for real bugs. In particular, we investigate

three research questions in Experiment #1.

Research Questions for Experiment #1
RQ1. How many real bugs from Defects4J can be correctly fixed by fix patterns from

our taxonomy?
RQ2. Can each Defects4J bug be fixed by different fix patterns?
RQ3. What are the properties of fix patterns that are successfully used to fix bugs?

In a recent study, Liu et al. [38] reported how fault localization

techniques substantially affect the repair performance of APR tools.

Given that, in this experiment, the APR tool (namely TBar) is only

used as a means to apply the fix patterns in order to assess their ef-

fectiveness, we must eliminate the fault localization bias. Therefore,

we assume that the bug positions at statement level are known,

and we directly provide it to the patch generation step of TBar,

without running any fault localization tool (which is part of the nor-

mal APR workflow, see Figure 1). To ensure readability across our

experiments, we denote this version of the APR system as TBarp
(where p stands for perfect localization). Table 5 summarizes the

experimental results of TBarp .

Table 5: Number of bugs fixed by fix patterns with TBarp .

Fixed Bugs C Cl L M Mc T Total

of Fully Fixed Bugs 12/13 20/26 13/18 23/35 3/3 3/6 74/101
of Partially Fixed Bugs 2/4 3/6 1/4 0/4 0/0 1/1 7/20

∗We provide x/y numbers: x is the number of correctly fixed bugs; y is the number of bugs
fixed with plausible patches. The same notation applies to Table 7.

Among 395 bugs in the Defects4J benchmark, TBarp can generate

plausible patches for 101 bugs. 74 of these bugs are fixedwith correct

patches. We also note that TBarp can partially fix3 20 bugs with

plausible patches, and 8 of them are correct. In a previous study, the

kPAR [38] baseline tool (i.e., a Java implementation of the PAR [23]

seminal template-based APR tool) was correctly/plausibly fixing

36/55 Defects4J bugs when assuming perfect localization.

While the results of TBarp are promising, ∼79%(=314/395) of

bugs cannot be correctly fixed with the available fix patterns. We

manually investigated these unfixed bugs and make the following

observations as research directions for improving the fix rates:

(1) Insufficient fix patterns. Many bugs are not fixed by TBarp sim-

ply due to the absence of matching fix patterns. This suggests

that the fix patterns collected in the literature are far from be-

ing representative for real-world bugs. The community must

thus keep contributing with effective techniques for mining fix

patterns from existing patches.

(2) Ineffective search of fix ingredients. Template-based APR is a kind

of search-based APR [69]: some fix patterns require donor code

(i.e., fix ingredients) to generate actual patches. For example, as

shown in Figure 2, to apply the relevant fix pattern FP9.2, one

needs to identify fix ingredient łImageMapUtilities.htmlEs-

capež as the necessary in generating the patch. The current

implementation of TBar limits its search space for donor code to

the łlocalž file where the bug is localized. It is a limitation to find

the correct donor code, but it reduces the risk of search space

explosion. In addition, TBar leverages the context of buggy code

to prune away irrelevant fix ingredients. Therefore, some bugs

cannot be fixed by TBar although its fix pattern can match with

code change actions. With more effective search strategies (e.g.,

larger search space such as fix ingredients from other projects

as in [34]), there might be more chances to fix more bugs.

RQ1: The collected fix patterns can be used to correctly fix 74 real bugs

from the Defects4J dataset. A larger portion of the dataset remains

however unfixed by TBarp , notably due to (1) the limitations of the fix

patterns set and to (2) the naïve search strategy for finding relevant

fix ingredients to build concrete patches from patterns.

Figure 3 summarizes the statistics on the number of bugs that

can be fixed by one or several fix patterns. The Y-axis denotes the

number of fix patterns (i.e.,n = 1, 2, 3, 4, 5, and >5) that can generate

plausible patches for a number of bugs (X-axis). The legend indicates

that łPž represents the number of plausible patches generated by

TBarp (i.e., those that are not found to be correct). ł#kž, where

3Partial fix: a patch makes the buggy program pass a part of previously failed test
cases without causing any new failed test cases [38].

36

TBar: Revisiting Template-Based Automated Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

public String generateToolTipFragment(String toolTipText) {

- return " title=\"" + toolTipText

+ return " title=\"" + ImageMapUtilities.htmlEscape(toolTipText)

+ "\" alt=\"\"";

}

Code Change Action:
Replace variable "toolTipText" with a method invocation expression "

ImageMapUtilities.htmlEscape(toolTipText)".

Matchable fix pattern: FP9.2.

Figure 2: Patch and code change action of fixing bug C-10.

28

9

2

1

38

10

5

3

10

4

4

3

1

1

1

1

1

2

3

4

5

>5

#
F
I
X

P
A
T
T
E
R
N
S

P #1 #2 #3 #4

Figure 3: Number of bugs plausibly and correctly fixed by single or

multiple fix patterns.

k ∈ [1, 4], indicates that a bug can be correctly fixed by only k fix

patterns (although it may be plausibly fixed by more fix patterns).

Consider for the bottom-most bar in Figure 3: 66 (=28+38) bugs

can be plausibly fixed by a single pattern (Y-axis value is 1); it

turns out that only 38 of them are correctly fixed. Note that several

patterns can generate (plausible) patches for a bug, but not all

patches are necessarily correct. For example, in the case of the top-

most bar in Figure 3, 5 bugs are each plausibly fixed by over 5 fix

patterns. However, only 1 bug is correctly fixed by 3 fix patterns.

In summary, 86% (= 38+10+5+3+10+4
74+7) of correctly fixed bugs (74

fully and 7 partially fixed bugs) are exclusively fixed correctly by

single patterns. In other words, generally, several fix patterns can

generate patches that can pass all test cases but, in most cases, the

bug is correctly fixed by only one pattern. This finding suggests that

it is necessary to carefully select an appropriate fix pattern when

attempting to fix a bug, in order to avoid plausible patches which

may prevent the discovery of correct patches by halting the repair

process (given that all tests are passing on the plausible patch).

RQ2: Some bugs can be plausibly fixed by different fix patterns.

However, in most cases, only one fix pattern is adequate for generating

a correct patch. This finding suggests a need for new research on fix

pattern prioritization.

Table 6 details which bug is fixed by which fix pattern(s). We note

that five fix patterns (i.e., FP3, FP4.3, FP5, FP7.2 and FP11.3) cannot

be used to generate a plausible patch for any Defects4J bug. Two

fix patterns (i.e., FP9.2 and FP12) lead to plausible patches for some

bugs, but none of them is correct. It does not necessarily suggest

that the aforementioned fix patterns are useless (or ineffective) in

APR. Instead, two reasons can explain their performance:

• The search for donor code may be inefficient for finding relevant

ingredients for applying these patterns

• The Defects4J dataset does not contain the types of bugs that can

be addressed by these fix patterns.

In addition, twenty (20) fix patterns lead to the generation of

correct patches for some bugs. Most of these fix patterns are in-

volved in the generation of plausible patches (which turn out to be

incorrect). Interestingly, we found the cases of six (6) fix patterns

which can generate several4 patch candidates, some which being

correct and others being only plausible, for the same 10 bugs (as

indicated in Table 6 with ‘G#’). This observation further highlights

4Note that, in this experiment TBarp generates and assesses all possible patch
candidates for a given pair "bug location - fix pattern" with varying ingredients.

the importance of selecting a relevant donor code for synthesizing

patches: selecting an inappropriate donor code can lead to the gen-

eration of a plausible (but incorrect) patch, which will impede the

generation of correct patches in a typical repair pipeline.

Aside from fix patterns, fix ingredients collected in donor code are

essential to be properly selected to avoid patches that are plausible

but may yet be incorrect.

We further inspect properties of fix patterns, such as change ac-

tions, granularity, and the number of changed statements in patches.

The statistics are shown in Figure 4, highlighting the number of

plausible (but incorrect) and correct patches for the different prop-

erty dimensions through which fix patterns can be categorized.

85

49

24

4

43
32

18
2

Update Insert Delete Move

#
fi
x
ed
b
u
g
s

122

38

2

54
39

2

Expression Statement Method

140

22

71

24

Single Multiple

Plausibly BUT Incorrectly fixed bugs. Correctly fixed bugs.

a. Change Actions b. Change Granularity c. Changed Spread

Figure 4: Qualitative statistics of bugs fixed by fix patterns.

More bugs are fixed by Update change actions than any by any

other actions. Similarly, fix patterns targeting expressions fix more

bugs correctly than patterns targeting statements and methods.

However, fix patterns mutating whole statements have a higher rate

of correct patches among their plausible generated patches. Finally,

fix patterns changing only single statements can correctly fix more

bugs than those touchingmultiple statements. Fix patterns targeting

multi-statements have however a higher rate of correctness.

RQ3: There are noticeable differences between successful repair

among fix patterns depending on their properties related to imple-

mented change actions, change granularity and change spread.

4.2 Repair Performance Comparison: TBar vs
State-of-the-art APR tools

Our second experiment evaluates TBar in a realistic setting for patch

generation, allowing for reliable comparison against the state-of-

the-art in the literature. Concretely, we investigate two research

questions in Experiment #2.

Research Questions for Experiment #2
RQ4. What performance can be achieved by TBar in a standard and practical repair

scenario?
RQ5. To what extent are the different fix patterns sensitive to noise in fault localization

(i.e., spotting buggy code locations)?

In this experiment we implement a realistic scenario, using a

normal fault localization (i.e., no assumption of perfect localization

as for TBarp) on Defects4J bugs. To enable a fair comparison with

performance results recorded in the literature, TBar leverages a

standard configuration in the literature [38] with GZoltar [9] and

Ochiai [4]. Furthermore, TBar does not utilize any additional tech-

nique to improve the accuracy of fault localization, such as crashed

stack trace (used by ssFix [74]), predicate switching [80] (used by

ACS [76]), or test case purification [79] (used by SimFix [18]).

With respect to the patch generation step, contrary to the exper-

iment with TBarp where all positions of multi-locations bugs were

known (cf. Section 4.1), TBar adapts a łfirst-generated and first-

selectedž strategy to progressively apply fix patterns, one at a time,

in various suspicious code locations: TBar generates a patch pi ,

37

ISSTA ’19, July 15–19, 2019, Beijing, China Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé

Table 6: Defects4j bugs fixed by fix patterns.

Bug
ID F

P
1 FP2

F
P
3 FP4

F
P
5 FP6 FP7 FP8 FP9 FP10 FP11

F
P
1
2 FP13

F
P
1
4 FP15

1 2 3 4 5 1 2 3 4 1 2 3 1 2 1 2 3 1 2 1 2 3 4 1 2 3 1 2 1 2

C-1 ❍ ● ❍ ❍ ❍ 1/5
C-4 ● ❍ ● 2/3
C-7 ❍ G# 1/2
C-8 ● 1/1
C-9 ● ❍ 1/2
C-11 ● 1/1
C-12 ● 1/1
C-14 ● ● ❍ 2/3
C-18 ❍ ❍ ❍ ❍ ● 1/5
C-19 ● 1/1
C-20 ● 1/1
C-24 ● 1/1
C-25 ● ❍ ❍ 1/3
C-26 ● ❍ ● 2/3

Cl-2 ● ❍ ❍ 1/3
Cl-4 ● 1/1
Cl-6 ❍ ❍ ❍ ❍ ❍ ● 1/6
Cl-10 ● 1/1
Cl-11 ❍ ❍ ❍ ❍ ● 1/5
Cl-13 ● 1/1
Cl-18 ● ❍ 1/2
Cl-21 ❍ ❍ ❍ ❍ ● 1/5
Cl-22 ❍ ❍ ❍ ❍ ● 1/5
Cl-31 ● ❍ 1/2
Cl-38 ❍ ❍ ● 1/3
Cl-40 ● 1/1
Cl-46 ● 1/1
Cl-62 ❍ ❍ ❍ G# ❍ 1/5
Cl-63 ❍ ❍ ❍ G# ❍ 1/5
Cl-70 ● 1/1
Cl-73 ● 1/1
Cl-85 ● 1/1
Cl-86 ● 1/1
Cl-102 ● ● 2/2
Cl-106 ❍ ● 1/2
Cl-115 ❍ ❍ ❍ ❍ ● 1/5
Cl-126 ❍ ❍ ❍ ❍ ❍ ● 1/6

L-6 ● 1/1
L-7 ❍ ❍ ❍ ● 1/4
L-10 G# ● 2/2
L-15 ❍ ● ❍ ❍ ❍ 1/5
L-22 ❍ ❍ G# ❍ ❍ 1/5
L-24 ● 1/1
L-26 ● 1/1
L-33 ● 1/1
L-39 ● ❍ ❍ 1/3
L-47 ● 1/1
L-51 ● 1/1
L-57 ❍ ❍ ❍ ● ● 2/5
L-59 ● 1/1
L-63 ❍ ❍ ❍ ❍ ❍ ❍ ● 1/7

M-4 ● 1/1
M-5 ● ❍ 1/2
M-11 ● ● ● ● 4/4
M-15 G# 1/1
M-22 ● ❍ 1/2
M-30 G# 1/1
M-33 ❍ ❍ ● 1/3
M-34 ● 1/1
M-35 ● 1/1
M-50 ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● 1/9
M-57 ● 1/1
M-58 ● 1/1
M-59 ● ❍ 1/2
M-65 ● 1/1
M-70 ● 1/1
M-75 ● 1/1
M-77 ❍ ● ❍ ● 2/4
M-79 G# 1/1
M-80 ❍ ● ❍ ❍ 1/4
M-82 ❍ ❍ ❍ ● ❍ 1/5
M-85 ❍ G# G# ❍ ● ❍ ❍ ❍ 3/8
M-89 ● 1/1
M-98 ● 1/1

Mc-26 ● 1/1
Mc-29 ● ● 2/2
Mc-38 ● ● 2/2

T-3 G# 1/1
T-7 ● ❍ 1/2
T-19 ❍ ● 1/2
T-26 ● 1/1

1 1 6 5 4 1 1 0 3 1 0 1 0 1 3 5 3 0 1 1 1 6 0 3 1 1 3 11 1 0 0 12 2 2 13 2
2 1 7 10 6 1 1 0 4 1 0 14 0 15 12 32 3 0 1 1 1 6 7 4 2 2 3 24 2 0 1 43 19 6 25 4

∗ ● indicates that the bug is correctly fixed and ❍ indicates that the generated patch is plausible but not correct. G#means that the fix pattern can generate both correct patch and plausible patch for a bug. ● and ❍ denote that the bug
can be partially fixed by the corresponding fix pattern. In the last column, we provide x/y numbers: x is the number of fix patterns that can generate correct patches for a bug, and y is the number of fix patterns that can generate plausible
patches for a bug. Note that, the bugs that can be plausible but incorrectly fixed by fix patterns are not shown in this table. # 1: number of bugs correctly fixed by a fix pattern. # 2: number of bugs plausible fixed by a fix pattern.

using a fix pattern that matches a given bug. If pi passes a subset of

previously-failing test cases without failing any previously-passing

test case, TBar selectspi as a plausible patch for the bug. Then, TBar

continues to validate another patchpi+1 (which can be generated by

the same fix pattern on the same code entity with other ingredients,

or on another code location). When pi+1 passes a subset of test

cases as pi , if pi+1 is generated for the same buggy code entity as

pi , pi+1 will be abandoned; otherwise, TBar takes pi+1 as another

plausible patch as well. Through this process, TBar creates a patch

set P = { pi , pi+1, ...} of plausible patches. Here, as soon as any patch

can pass all the given test cases for a given bug, TBar takes it as a

plausible patch for the given bug, which is regarded as a fully-fixed

38

TBar: Revisiting Template-Based Automated Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

Table 7: Comparing TBar against the state-of-the-art APR tools.

Project jGenProg jKali jMutRepair HDRepair Nopol ACS ELIXIR JAID ssFix CapGen SketchFix FixMiner LSRepair SimFix kPAR AVATAR
TBar

Fully fixed Partially fixed

Chart 0/7 0/6 1/4 0/2 1/6 2/2 4/7 2/4 3/7 4/4 6/8 5/8 3/8 4/8 3/10 5/12 9/14 0/4
Closure 0/0 0/0 0/0 0/7 0/0 0/0 0/0 5/11 2/11 0/0 3/5 5/5 0/0 6/8 5/9 8/12 8/12 1/5
Lang 0/0 0/0 0/1 2/6 3/7 3/4 8/12 1/8 5/12 5/5 3/4 2/3 8/14 9/13 1/8 5/11 5/14 0/3
Math 5/18 1/14 2/11 4/7 1/21 12/16 12/19 1/8 10/26 12/16 7/8 12/14 7/14 14/26 7/18 6/13 19/36 0/4
Mockito 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/2 2/2 1/2 0/0
Time 0/2 0/2 0/1 0/1 0/1 1/1 2/3 0/0 0/4 0/0 0/1 1/1 0/0 1/1 1/2 1/3 1/3 1/2

Total 5/27 1/22 3/17 6/23 5/35 18/23 26/41 9/31 20/60 21/25 19/26 25/31 19/37 34/56 18/49 27/53 43/81 2/18

P(%) 18.5 4.5 17.6 26.1 14.3 78.3 63.4 29.0 33.3 84.0 73.1 80.6 51.4 60.7 36.7 50.9 53.1 11.1

∗łPž is the probability of generated plausible patches to be correct. The data of other APR tools are excerpted from the corresponding work. kPAR [38] is an open-source implementation of PAR [23].

Table 8: Per-pattern repair performance.

F
P
1 FP2

F
P
3 FP4

F
P
5 FP6 FP7 FP8 FP9 FP10 FP11

F
P
1
2 FP13

F
P
1
4 FP15

1 2 3 4 5 1 2 3 4 1 2 3 1 2 1 2 3 1 2 1 2 3 4 1 2 3 1 2 1 2

Correct 1 4 2 1 0 1 0 1 0 0 0 0 0 0 3 3 0 0 0 1 2 0 1 1 1 1 7 1 0 0 9 1 0 2 2
Avg position* (1) (16) (1) (5) - (5) - (5) - - - - - - (23) (16) - - - (9) (1) - (2) (62) (6) (1) (12) (18) - - (5) (1) - (2) (1)

Plausible (all) 1 7 4 1 0 1 0 3 0 0 0 0 1 0 11 4 0 0 0 1 4 0 2 2 1 1 12 1 0 0 25 4 1 7 5

Avg position* (1) (12)† (191) (5) - (5) - (20) - - - - (8) - (27)† (15) - - - (9) (18) - (4) (49) (6) (1) (15)† (18) - - (8)† (20) (15) (26) (16)

∗Average position of the exact buggy position in the list of suspicious statements yield by fault localization tool. † The exact buggy positions of some bugs cannot be yield by fault localizaiton tool.

bug, and all pi ∈ P will be abandoned. Otherwise, our tool yields P ,

a set of plausible patches that can each partially fix the given bug.

We run the TBar APR system against the buggy programs of

the Defects4J dataset. Table 7 presents the performance of TBar

in comparison with recent state-of-the-art APR tools from the lit-

erature. TBar can fix 81 bugs with plausible patches, 43 of which

are correctly fixed. No other APR tool had reached this number

of fixed bugs. Nevertheless, its precision (ratio of correct vs. plau-

sible patches) is lower than some recent tools such as CapGen

and SimFix which employs sophisticated techniques to select fix

ingredients. Nonetheless, it is noteworthy that, despite using fix

patterns catalogued in the literature, we can fix three bugs (namely

Cl-86,L-47,M-11) which had never been fixed by any APR system:

M-11 is fixed by a pattern found by a standalone fix pattern mining

tool [35] but which was not encoded by any APR system yet. Cl-86

and L-47 are fixed by patterns that were not applied to Defects4J.

RQ4: TBar outperforms all recent state-of-the-art APR tools that

were evaluated on the Defects4J dataset. It correctly fixes 43 bugs,

while the runner-up (SimFix) is reported to correctly fix 34 bugs.

It is noteworthy that TBar performs significantly less than TBarp
(43 vs. 74 correctly fixed bugs). This result is in line with a recent

study [38], which demonstrated that fault localization imprecision

is detrimental to APR repair performance. Table 6 summarizes in-

formation about the number of bugs each fix pattern contributed

to fixing with TBarp . While only 4 fix patterns did not lead to the

generation of any plausible patch when assuming perfect localiza-

tion. With TBar, it is the case for 13 fix patterns (see Table 8). This

observation further confirms the impact of fault localization noise.

We propose to examine the locations where TBar applied fix

patterns to generate plausible but incorrect patches. As shown in

Figure 5, TBar has made changes on incorrect positions (i.e., non-

buggy locations) for 24 out of the 38 fully-fixed and 15 out of the

16 partially-fixed bugs.

24
1514

1

Fully fixed Partially fixed

#
 f

ix
ed

b
u

g
s incorrect position

corret position

Figure 5: The mutated code positions of plausibly but incorrectly

fixed bugs.

Even when TBar applies a fix pattern to the precise buggy loca-

tion, the generated patch may be incorrect. As shown in Figure 5,

14 patches that fully fix Defects4J bugs mutate the correct locations:

in 3 cases, the fix patterns were inappropriate; in 2 other cases,

TBar failed to locate relevant donor code; for the remaining, TBar

does not support the required fix patterns.

Finally, Figure 6 illustrates the impact of fault localization per-

formance: unfixed bugs (but correctly fixed by TBarp) are generally

more poorly localized than correctly fixed bugs. Similarly, we note

that many plausible but incorrect patches are generated for bugs

which are not well localized (i.e., several false positive buggy loca-

tions are mutated leading to plausible but incorrect patches).

U
F

0 400 800 1200 1600 2000

P
C

0 10 20 30 40 50 60 70 80 90

* X-axis: Bug positions in suspicious list reported by fault localization.

Figure 6: Distribution of the positions of buggy code locations in

fault localization list of suspicious statements. C and P denote

Correctly- and Plausibly- (but incorrectly) fixed bugs, respectively.

F and U denote Fixed and Unfixed bugs.

Average positions bugs (in fault localization suspicious list) are

also provided in Table 8. It appears that some fix patterns (e.g.,

FP2.1, FP6.3, FP10.2) can correctly fix bugs that are poorly localized,

showing less sensitivity to fault localization noise than others.

RQ5: Fault localization noise has a significant impact on the per-

formance of TBar. Fix patterns are diversely sensitive to the false

positive locations that are recommended as buggy positions.

5 DISCUSSION

Overall, our investigations reveal that a large catalogue of fix pat-

terns can help improve APR performance. However, at the same

time, there are other challenges that must be dealt with: more ac-

curate fault localization, effective search of relevant donor code,

fix pattern prioritization. While we will work on some of these

research directions in future work, we discuss in this section some

threats to validity of the study and practical limitations of TBar.

5.1 Threats to Validity

Threats to external validity include the target language of this study,

i.e., Java. Fix patterns studied in this paper only cover the fix pat-

terns targeting at Java program bugs released by the state-of-the-art

pattern-based APR systems. However, we believe that most fix pat-

terns presented in this study could be applied to other languages

since fix patterns are illustrated as abstract syntax tree level. An-

other threat to external validity could be the fix pattern diversity.

Our study may not consider all available fix patterns so far in the

literature. To reduce this threat, we systematically reviewed the

39

ISSTA ’19, July 15–19, 2019, Beijing, China Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé

research on pattern-based program repair in the literature. Never-

theless, we acknowledge that integrating more fix patterns may

not necessarily lead to increased number of bugs that are correctly

fixed. With too many fix patterns, the search space of fix patterns

and patch candidates will explode. Eventually, the APR tool will

produce a huge number of plausible patches, many of which might

be validated before the correct ones [69]. A future research direction

could be on the construction and curation of fix patterns database

for APR.

Our strategy of fix pattern selection can be a threat to internal

validity: it naïvely matches patterns based on the AST context

around buggy locations. More advanced strategies would give a

higher probability to select appropriate patterns to fix more bugs.

Our approach to searching for donor code also carries some threats

to validity: TBar focuses on the local buggy file, while previous

works have shown that the adequate donor code, for some bugs, is

available in other files [18, 69]. In future work, we will investigate

the search of donor code beyond local files, while using heuristics to

cope with the potential search space explosion. Finally, the selected

benchmark for evaluation constitutes another threat to external

validity for assessment. The performance achieved by TBar on

Defects4J may not be reached on a bigger, more diverse and more

representative dataset. To address this threat, new benchmarks such

as Bugs.jar [61] and Bears [46] should be investigated.

5.2 Limitations

TBar selects fix patterns in a naïve way, it thus would be necessary

to design a sophisticated strategy (such as bug symptom, bug type,

or other information from bug reports) for fix pattern selection to

reduce the noise from inappropriate fix patterns. Searching donor

code for synthesis patches is another limitation of TBar, as the

correct donor code for fixing some bugs is located in the code files

that do not contain the bug [18, 69]. If TBar extends the donor code

searching to other non-buggy code files, it will cause the search

space explosion.

6 RELATED WORK

Fault Localization. In general, most APR pipelines start with fault

localization (FL), as shown in Figure 1. Once the buggy position is

localized, ARP tools can mutate the buggy code entity to generate

patches. To identify defect locations in a program, several auto-

mated FL techniques have been proposed [72]: slice-based [47, 71],

spectrum-based [6, 57], statistics-based [32, 33], etc.

Spectrum-based FL is widely adopted in APR systems since they

identify bug position at the statement level. It relies on the ranking

metrics (e.g., Trantula [19], Ochiai [5]) to calculate the suspicious-

ness of each statement. GZoltar [9] and Ochiai have been widely in-

tegrated into APR systems since their effectiveness has been demon-

strated in several empirical studies [56, 65, 73, 78]. As reported by

Liu et al. [38] and studied in this paper, this FL configuration still has

a limitation on localizing bug positions. Therefore, researchers tried

to enhance FL techniques with new techniques, such as predicate

switching [76, 80] and test case purification [18, 79].

PatchGeneration.Another key process of APR pipelines is search-

ing for another shape of a program (i.e., a patch) in the space of

all possible programs [30, 43]. If the search space is too small, it

might not include the correct patches. [69]. To reduce this threat,

a straightforward strategy is to expand the search space, however,

which could lead to other two problems: (1) at worst, there still is

no correct patch in it; and (2) the expanded search space includes

more plausible patches that enlarge the possibility of generating

plausible patches before correct ones [34, 69].

To improve repair performance, many APR systems have been

explored to address the search space problem. Synthesis-based

APR systems [42, 76, 77] explored to limit the search space on

conditional bug fixes by synthesizing new conditional expressions

with variables identified from the buggy code. Pattern-based APR

tools [13, 17, 18, 23, 25, 29, 39ś41, 62] are designed to purify the

search space by following fix patterns to mutate buggy code entities

with retrieved donor code. Other APR pipelines focus on specific

search methods for donor code or patch synthesizing strategies, to

address the search space problem, such as contract-based [10, 66],

symbolic execution based [53], learning based [7, 16, 44, 59, 64,

70], and donor code searching [21, 51] APR tools. Various existing

APR tools have achieved promising results on fixing real bugs,

but there is still an opportunity to improve the performance; for

example, mining more fix patterns, improving pattern selection and

donor code retrieving strategy, exploring a new strategy for patch

generation, and prioritizing bug positions.

Patch Correctness. The ultimate goal of APR systems is to auto-

matically generate a correct patch that can resolve the program

defects. In the beginning, patch correctness is evaluated by passing

all test cases [23, 29, 67]. However, these patches could be overfit-

ting [27, 58] and even worse than the bug [63]. Since then, APR

systems are evaluated with the precision of generating correct

patches [18, 39, 69, 76]. Recently, researchers start to explore au-

tomated frameworks that can identify patch correctness for APR

systems automatically [28, 75].

7 CONCLUSION

Fix patterns have been studied in various scenarios to understand

bug fixes in the wild. They are further implemented in different APR

pipelines to generate patches automatically. Although template-

based APR tools have achieved promising results, no extensive

investigation on the effectiveness fix patterns was conducted. We

fill this gap in this work by revisiting the repair performance of fix

patterns via a systematic study assessing the effectiveness of a vari-

ety of fix patterns summarized from the literature. In particular, we

build a straightforward template-based APR tool, TBar, which we

evaluate on the Defects4J benchmark. On the one hand, assuming

a perfect fault localization, TBar fixes 74/101 bugs correctly/plausi-

bly. On the other hand, in a normal/practical APR pipeline, TBar

correctly fixes 43 bugs despite the noise of fault localization false

positives. This constitutes a record performance in the literature

on Java program repair. We expect TBar to be established as the

new baseline APR system, leading researchers to propose better

techniques for substantial improvement of the state-of-the-art.

ACKNOWLEDGMENTS

This work is supported by the Fonds National de la Recherche

(FNR), Luxembourg, through RECOMMEND 15/IS/10449467 and

FIXPATTERN C15/IS/9964569.

40

TBar: Revisiting Template-Based Automated Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

REFERENCES
[1] Last Accessed: May. 2019. Defecst4J. https://github.com/rjust/defects4j/releases/

tag/v1.2.0.
[2] Last Accessed: May. 2019. PAR Fix Templates. https://sites.google.com/site/

autofixhkust/home/fix-templates.
[3] Last Accessed: May. 2019. Program Repair. http://program-repair.org.
[4] Rui Abreu, Arjan JC Van Gemund, and Peter Zoeteweij. 2007. On the accuracy of

spectrum-based fault localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION. IEEE, 89ś98.

[5] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. 2009. A
practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780ś1792.

[6] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2009. Spectrum-based
multiple fault localization. In Proceedings of the 24th International Conference on
Automated Software Engineering. IEEE, 88ś99.

[7] Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. 2018. Neuro-symbolic program
corrector for introductory programming assignments. In Proceedings of the 40th
International Conference on Software Engineering. ACM, 60ś70.

[8] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbo-
gen. 2013. Reversible debugging software. Judge Bus. School, Univ. Cambridge,
Cambridge, UK, Tech. Rep (2013).

[9] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. 2012. Gzoltar: an
eclipse plug-in for testing and debugging. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. IEEE/ACM, 378ś
381.

[10] Liushan Chen, Yu Pei, and Carlo A Furia. 2017. Contract-based program re-
pair without the contracts. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 637ś647.

[11] Zack Coker and Munawar Hafiz. 2013. Program transformations to fix C inte-
gers. In Proceedings of the 35th IEEE/ACM International Conference on Software
Engineering. IEEE/ACM, 792ś801.

[12] Kinga Dobolyi andWestleyWeimer. 2008. Changing java’s semantics for handling
null pointer exceptions. In Proceedings of the 19th International Symposium on
Software Reliability Engineering. IEEE, 47ś56.

[13] Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin Monperrus. 2017.
Dynamic patch generation for null pointer exceptions using metaprogramming.
In Proceedings of the 24th International Conference on Software Analysis, Evolution
and Reengineering. IEEE, 349ś358.

[14] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering. ACM, 313ś324.

[15] Ali Ghanbari and Lingming Zhang. 2018. Practical program repair via bytecode
mutation. arXiv preprint arXiv:1807.03512 (2018).

[16] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence. AAAI Press, 1345ś1351.

[17] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Towards
practical program repair with on-demand candidate generation. In Proceedings of
the 40th International Conference on Software Engineering. ACM, 12ś23.

[18] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Similar Code.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 298ś309.

[19] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. ACM, 273ś282.

[20] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the 23rd ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 437ś440.

[21] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
programs with semantic code search (t). In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 295ś306.

[22] StephenWKent. 2008. Dynamic error remediation: A case study with null pointer
exceptions. University of Texas Master’s Thesis (2008).

[23] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 35th
International Conference on Software Engineering. IEEE, 802ś811.

[24] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2018. FixMiner: Mining Relevant Fix
Patterns for Automated Program Repair. arXiv preprint arXiv:1810.01791 (2018).

[25] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: syntax-and semantic-guided repair synthesis via programming by
examples. In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering. ACM, 593ś604.

[26] Xuan-Bach D Le, Quang Loc Le, David Lo, and Claire Le Goues. 2016. Enhancing
automated program repair with deductive verification. In Proceedings of the 32nd

International Conference on Software Maintenance and Evolution. IEEE, 428ś432.
[27] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Overfitting

in semantics-based automated program repair. Empirical Software Engineering
(2018), 1ś27.

[28] Xuan-Bach D. Le, Lingfeng Bao, David Lo, Xin Xia, and Shanping Li. 2019. On Re-
liability of Patch Correctness Assessment. In Proceedings of the 41th International
Conference on Software Engineering.

[29] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In Proceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering, Vol. 1. IEEE, 213ś224.

[30] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each. In Proceedings of the 34th International Conference on Software
Engineering. IEEE, 3ś13.

[31] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A generic method for automatic software repair. IEEE Transactions on
Software Engineering 38, 1 (2012), 54ś72.

[32] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. 2005.
Scalable statistical bug isolation. In Proceedings of the ACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implementation. ACM, 15ś26.

[33] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel PMidkiff. 2006. Statistical
debugging: A hypothesis testing-based approach. IEEE Transactions on Software
Engineering 32, 10 (2006), 831ś848.

[34] Kui Liu, Koyuncu Anil, Kisub Kim, Dongsun Kim, and Tegawendé F. Bissyandé.
2018. LSRepair: Live Search of Fix Ingredients for Automated Program Repair. In
Proceedings of the 25th Asia-Pacific Software Engineering Conference. 658ś662.

[35] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Shin Yoo, and Yves Le Traon.
2018. Mining fix patterns for findbugs violations. IEEE Transactions on Software
Engineering (2018).

[36] Kui Liu, Dongsun Kim, Tegawendé François D Assise Bissyande, Taeyoung Kim,
Kisub Kim, Anil Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to Sport
and Refactor Inconsistent Method Names. In Proceedings of the 41st ACM/IEEE
International Conference on Software Engineering. IEEE.

[37] Kui Liu, Dongsun Kim, Anil Koyuncu, Li Li, Tegawendé F Bissyandé, and Yves
Le Traon. 2018. A closer look at real-world patches. In Proceedings of the 34th
International Conference on Software Maintenance and Evolution. IEEE, 275ś286.

[38] Kui Liu, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
and Yves Le Traon. 2019. You Cannot Fix What You Cannot Find! An Investi-
gation of Fault Localization Bias in Benchmarking Automated Program Repair
Systems. In Proceedings of the 12th IEEE International Conference on Software
Testing, Verification and Validation. IEEE.

[39] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR : Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering. IEEE.

[40] Xuliang Liu and Hao Zhong. 2018. Mining stackoverflow for program repair. In
Proceedings of the 25th International Conference on Software Analysis, Evolution
and Reengineering. IEEE, 118ś129.

[41] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering. ACM, 727ś739.

[42] Fan Long and Martin Rinard. 2015. Staged program repair with condition synthe-
sis. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering.
ACM, 166ś178.

[43] Fan Long and Martin Rinard. 2016. An analysis of the search spaces for generate
and validate patch generation systems. In Proceedings of the 38th International
Conference on Software Engineering. ACM, 702ś713.

[44] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, 298ś312.

[45] Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. 2014. Automatic
runtime error repair and containment via recovery shepherding. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Vol. 49. ACM, 227ś238.

[46] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.
Bears: An Extensible Java Bug Benchmark for Automatic Program Repair Studies.
In Proceedings of the IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 468ś478.

[47] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014.
Slice-based statistical fault localization. Journal of Systems and Software 89 (2014),
51ś62.

[48] Matias Martinez and Martin Monperrus. 2015. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical Software
Engineering 20, 1 (2015), 176ś205.

[49] Matias Martinez and Martin Monperrus. 2016. Astor: A program repair library
for java. In Proceedings of the 25th International Symposium on Software Testing
and Analysis. ACM, 441ś444.

41

https://github.com/rjust/defects4j/releases/tag/v1.2.0
https://github.com/rjust/defects4j/releases/tag/v1.2.0
https://sites.google.com/site/autofixhkust/home/fix-templates
https://sites.google.com/site/autofixhkust/home/fix-templates
http://program-repair.org

ISSTA ’19, July 15–19, 2019, Beijing, China Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé

[50] Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair Search Space
with Automatically Mined Templates: The Cardumen Mode of Astor. In Pro-
ceedings of the International Symposium on Search Based Software Engineering.
Springer, 65ś86.

[51] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking
for simple program repairs. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press, 448ś458.

[52] Martin Monperrus. 2018. Automatic software repair: a bibliography. Comput.
Surveys 51, 1 (2018), 17:1ś17:24.

[53] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: program repair via semantic analysis. In Proceedings of the
35th International Conference on Software Engineering. IEEE, 772ś781.

[54] NIST. Last Accessed: Jan. 2019.. Software Errors Cost U.S. Economy $59.5 Billion
Annually. http://www.abeacha.com/NIST_press_release_bugs_cost.htm.

[55] Kai Pan, Sunghun Kim, and E James Whitehead. 2009. Toward an understanding
of bug fix patterns. Empirical Software Engineering 14, 3 (2009), 286ś315.

[56] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In Proceedings of the 39th International Conference on Software Engi-
neering. IEEE/ACM, 609ś620.

[57] Alexandre Perez, Rui Abreu, and Arie van Deursen. 2017. A test-suite diagnos-
ability metric for spectrum-based fault localization approaches. In Proceedings of
the 39th International Conference on Software Engineering. IEEE/ACM, 654ś664.

[58] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch
plausibility and correctness for generate-and-validate patch generation systems.
In Proceedings of the 24th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 24ś36.

[59] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic
program transformations from examples. In Proceedings of the 39th IEEE/ACM
International Conference on Software Engineering. IEEE/ACM, 404ś415.

[60] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and Loris D’Antoni. 2018. Learn-
ing Quick Fixes from Code Repositories. arXiv preprint arXiv:1803.03806 (2018).

[61] Ripon Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul Prasad. 2018.
Bugs.jar: a large-scale, diverse dataset of real-world java bugs. In Proceedings
of the IEEE/ACM 15th International Conference on Mining Software Repositories.
IEEE, 10ś13.

[62] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. ELIXIR:
Effective object-oriented program repair. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 648ś659.

[63] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? Overfitting in automated program repair. In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering. ACM, 532ś543.

[64] Mauricio Soto and Claire Le Goues. 2018. Using a probabilistic model to predict
bug fixes. In Proceedings of the 25th International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 221ś231.

[65] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the validity
and value of empirical assessments of the accuracy of coverage-based fault
locators. In Proceedings of the 2013 International Symposium on Software Testing
and Analysis. ACM, 314ś324.

[66] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz, Bertrand Meyer,
and Andreas Zeller. 2010. Automated fixing of programs with contracts. In

Proceedings of the 19th international symposium on Software testing and analysis.
ACM, 61ś72.

[67] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of the
31st International Conference on Software Engineering. IEEE, 364ś374.

[68] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2017.
An empirical analysis of the influence of fault space on search-based automated
program repair. arXiv preprint arXiv:1707.05172 (2017).

[69] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th IEEE/ACM International Conference on Software Engineering.
IEEE/ACM, 1ś11.

[70] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys
Poshyvanyk. 2019. Sorting and Transforming Program Repair Ingredients via
Deep Learning Code Similarities. In Proceedings of the 26th IEEE International
Conference on Software Analysis, Evolution and Reengineering. IEEE.

[71] W Eric Wong, Vidroha Debroy, and Byoungju Choi. 2010. A family of code
coverage-based heuristics for effective fault localization. Journal of Systems and
Software 83, 2 (2010), 188ś208.

[72] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707ś740.

[73] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A
theoretical analysis of the risk evaluation formulas for spectrum-based fault
localization. ACM Transactions on Software Engineering and Methodology 22, 4
(2013), 31:1ś31:40.

[74] Qi Xin and Steven P Reiss. 2017. Leveraging syntax-related code for automated
program repair. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE/ACM, 660ś670.

[75] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying patch correctness in test-based program repair. In Proceedings of the
40th International Conference on Software Engineering. ACM, 789ś799.

[76] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings of
the 39th IEEE/ACM International Conference on Software Engineering. IEEE/ACM,
416ś426.

[77] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clement, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering 43, 1 (2017), 34ś55.

[78] Jifeng Xuan and Martin Monperrus. 2014. Learning to combine multiple ranking
metrics for fault localization. In Proceedings of the 30th International Conference
on Software Maintenance and Evolution. IEEE, 191ś200.

[79] Jifeng Xuan and Martin Monperrus. 2014. Test case purification for improv-
ing fault localization. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 52ś63.

[80] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating faults through
automated predicate switching. In Proceedings of the 28th International Conference
on Software Engineering. ACM, 272ś281.

[81] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In Pro-
ceedings of the 37th IEEE/ACM International Conference on Software Engineering-
Volume 1. IEEE/ACM, 913ś923.

42

http://www.abeacha.com/NIST_press_release_bugs_cost.htm

	Abstract
	1 Introduction
	2 Fix Patterns
	2.1 Fix Patterns Inference
	2.2 Fix Patterns Taxonomy
	2.3 Analysis of Collected Patterns

	3 Setup for Repair Experiments
	3.1 TBar: a Baseline APR System
	3.2 Assessment Benchmark

	4 Assessment
	4.1 Repair Suitability of Fix Patterns
	4.2 Repair Performance Comparison: TBar vs State-of-the-art APR tools

	5 Discussion
	5.1 Threats to Validity
	5.2 Limitations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

